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Abstract
Borrelia burgdorferi, the agent of Lyme disease, differentially expresses numerous genes

and proteins as it cycles between mammalian hosts and tick vectors. Insights on regulatory

mechanisms have been provided by earlier studies that examined B. burgdorferi gene

expression patterns during cultivation. However, prior studies examined bacteria at only a

single time point of cultivation, providing only a snapshot of what is likely a dynamic tran-

scriptional program driving B. burgdorferi adaptations to changes during culture growth

phases. To address that concern, we performed RNA sequencing (RNA-Seq) analysis of

B. burgdorferi cultures at early-exponential, mid-exponential, and early-stationary phases

of growth. We found that expression of nearly 18% of annotated B. burgdorferi genes

changed significantly during culture maturation. Moreover, genome-wide mapping of the B.

burgdorferi transcriptome in different growth phases enabled insight on transcript bound-

aries, operon structures, and identified numerous putative non-coding RNAs. These RNA-

Seq data are discussed and presented as a resource for the community of researchers

seeking to better understand B. burgdorferi biology and pathogenesis.

Introduction

Borrelia burgdorferi, the spirochetal bacterium that causes Lyme disease, persists in nature
through a life cycle that necessitates alternating infection of vertebrates and ticks [1]. Successful
infection of these two very different types of animals, and transmission between host and vec-
tor, requires that B. burgdorferi express different sets of host-interactive proteins at each step of
the cycle. During the past two decades, numerous borrelial proteins have been shown to be
expressed specifically duringmammalian or tick infection, or during transmission stages (e.g.
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[1–10]). Further investigations have identified a number of factors that are involved with B.
burgdorferi gene and protein regulation, including DNA-binding proteins, two-component
sensorymechanisms, and enzymes that synthesize/degrademodified nucleotide alarmones
(e.g. [1,11–18]). Detailed understanding of the regulatory networks at play during B. burgdor-
feri infection processes is essential to develop novel therapies that specifically target essential
borrelial processes.

Transcriptomic investigations of spirochetal regulatorymechanisms during mammal or
tick infection are complicated by the facts that B. burgdorferi do not achieve high concentra-
tions during mammalian infection, and individual ticks do not contain substantial numbers of
bacteria [1]. As proxies, researchers have profiled gene expression in cultured bacteria to
model transcriptomic changes (e.g. [2,13,17,19–34]). Studies have been performed to compare
B. burgdorferi transcriptomes in wild-type bacteria grown under different culture conditions,
or a mutant versus its wild-type parent strain.While these have revealed important biological
insights, they have been limited in several key ways. First, nearly all of these studies usedmicro-
arrays to profile gene expression, and examined only annotated coding regions of the B. burg-
dorferi genome. More recently, RNA sequencing (RNA-Seq) has been used to profile B.
burgdorferi transcriptomes, but analyses of those data were still limited to annotated ORFs
[17,31,33], and thus ignored intergenic RNAs. Furthermore, most could not differentiate
between sense (i.e. protein-encoding) and antisense transcripts. It is increasingly apparent that
diverse bacteria produce numerous noncoding RNAs (ncRNAs) that regulate myriad biological
processes [35,36]. Some ncRNAs hybridize with mRNAs to alter translation or stability, some
regulate other cellular functions (e.g. 6S RNA), while others combine with proteins to form
nucleoprotein complexes (e.g. the secretory signal recognition particle, SRP) [37–40]. To date,
little is known about the existence of ncRNAs in B. burgdorferi. One study used homologies
with other bacterial species to predict borrelial ncRNAs, confirmed production of 12 ncRNAs,
and concluded that B. burgdorferi appears to contain only a few noncoding RNA molecules
[41]. The intervening 12 years have shed very little new light on borrelial ncRNAs: a positive
regulator of rpoSmRNA translation, dsrA, has been identified and characterized [14,42,43],
and another locus was predicted to encode 6S RNA, but its transcription was not confirmed
[37]. Both of those ncRNAs were identified in the present studies.

Another limitation of previously-published studies of the B. burgdorferi transcriptome is
that, with the exception of a single study examining the transition from exponential growth
into a starvation state [33], they were limited to a single time point and thus failed to define
transcriptional dynamics as cultures progressed. Several examples are known of B. burgdorferi
proteins being differentially expressed as cultures age [20,44,45]. Thus, it is possible that some
previously-reported differences in mRNA expression levels may have been due to variations in
culture ages, rather than the mutations or other conditions being investigated.

To address those questions and concerns, we performedRNAtag-Seq on multiple, indepen-
dent B. burgdorferi cultures. Each culture was sampled at three different stages: early exponen-
tial, mid-exponential, and early stationary phases. RNAtag-seq is a novel method which allows
for the multiplexing of up to 32 directional cDNA library preparations in a single reaction [46].
This method establishes stranded-ness by ligating DNA adapters directly to the 3’ ends of frag-
mented RNA, then using those tag sequences as priming sites for reverse transcription. A sec-
ond adaptor is then ligated to the 3’ ends of the first strand cDNAs, followed by PCR
amplification and Illumina sequencing. The combination of genomic DNA depletion, ligation
of adapters directly to RNA, and specific (non-random priming) PCR enrichment generates a
strand-identified library with very low levels of background [46]. The resulting data include
reads derived from both sense and antisense strands of protein coding genes and from inter-
genic regions. The particularly low levels of background reads facilitated the detection of
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ncRNAs and mapping of transcript boundaries. The latter further enabled experimental assess-
ment of algorithms that in silico predict Rho-independent termination sites.

Materials and Methods

Bacteria and culture conditions

B. burgdorferi B31-A3 is an infectious, clonal derivative of the species type strain B31, and con-
tains all of the naturally-occurringDNA elements of the sequenced culture of strain B31 except
cp9 [47–49]. Absence of cp9 does not have any detectable effects on B. burgdorferi physiology
either during infection processes or in culture [50,51]. Immediately prior to these studies, the
DNA content of B31-A3 cultures were assessed by multiplex PCR [52], to assess presence of all
naturally-occurringplasmids.
B. burgdorferi were cultured in Barbour-Stoenner-Kelly II (BSK-II) liquid medium, pre-

pared in-house [53]. Bacteria from glycerol stocks that had been frozen at -80°C were diluted
1:100 into 5 ml of fresh medium, then incubated at 35°C. Transfer of B. burgdorferi from -80°C
to warmer growth conditions induces substantial changes in transcript and protein levels [54].
To prevent those effects from impacting upon our results, the initial 35°C cultures were grown
until cell densities reached mid- exponential phase (1x107 bacteria/ml), then diluted 1:100 into
30 ml of fresh BSK-II (to a final density of 1x105 bacteria/ml), and again incubated at 35°C. Ali-
quots of those cultures were removed when bacterial densities reached early-exponential
(1x106 bacteria/ml),mid-exponential (1x107 bacteria/ml), and stationary phases of growth (1
day after plateauing at 1x108 bacteria/ml). For early-exponential cultures, 20 ml were required
to reliably isolate sufficient RNA for library construction. For mid-exponential and stationary
phase cultures, 5 ml was sufficient. Bacteria were harvested by centrifugation at 8200xG for 30
min at 4°C. Supernatants were decanted and the cell pellets were immediately resuspended in 1
ml of pre-warmed (60°C) TRIzol (Thermo-Fisher). These suspensions were stored at -80°C
until processed.

RNA isolation, library preparation, and RNA-Seq

Cell-TRIzol suspensions were thawed at room temperature. RNA was isolated from 500 μl of
cell suspension using the Zymo RNA Direct-Zolminiprep kit (Zymo). Isolated RNA was eluted
in 35 μl RNase-free water and stored at -80C. RNA quantity and integrity was assayed by
microfluidic analysis using an Agilent 2100 Bioanalyzer and with the Agilent RNA 6000 Nano
chip kit (Agilent) and only samples with a RIN score> 9 were used for library construction.

Illumina cDNA libraries were generated using the RNAtag-seq protocol as described [46].
Briefly, 1 μg of total RNA was fragmented, depleted of genomic DNA, dephosphorylated, then
ligated to DNA adapters carrying 5’-AN8-3’ barcodes with a 5’ phosphate and a 3’ blocking
group. Barcoded RNAs were pooled and depleted of rRNA using the RiboZero rRNA depletion
kit (Epicentre). These pools of barcoded RNAs were converted to Illumina cDNA libraries in 3
main steps: (i) reverse transcription of the RNA using a primer designed to the constant region
of the barcoded adaptor; (ii) degradation of the RNA and ligation of a second adaptor to the
single-stranded cDNA; (iii) PCR amplification using primers that target the constant regions
of the 3’ and 5’ ligated adaptors and contain the full sequence of the Illumina sequencing adap-
tors. cDNA libraries were sequenced on four lanes of an Illumina Nextseq 500.

For the analyses of RNAtag-Seq data, reads from each sample in the pool were identified
based on their associated barcode using custom scripts [55]. Up to 1 mismatch in the barcode
was allowed, with the caveat that it did not enable assignment to more than one barcode. Bar-
code sequences were removed from reads, and the reads from each sample were aligned to the
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B. burgdorferi B31 genome sequence using BWA [47,48,56]. Differential expression analysis
was conducted with raw reads counts per gene using DESeq [57].

Sequences have been deposited in the NCBI Short Read Archive (SRA) under the Bioproject
ID PRJNA339291 and Biosample IDs SAMN05587080, SAMN05589073, and
SAMN05589074.

Quantitative RT-PCR

Sets of bacterial cultures were grown in identical conditions described for those used for pre-
paring RNA-Sequencing libraries. RNA was extracted and validated for quality as described
above, with the addition of on-columnDNase I digestion (Zymo). Isolated RNA was then con-
verted to cDNA using the iScript cDNA synthesis kit (Bio-Rad). Quantitative RT-PCR
(qRT-PCR) was performed essentially as previously described [58] using a Bio-Rad CFX96
cycler and oligonucleotide primers listed in S1 Table. Comparisons were made using the ΔCt
method, using ftsK as a reference gene. As describedbelow, ftsKwas determined by RNA-Seq
to be constitutively expressed under all culture conditions, whereas other transcripts that have
previously been used as internal controls (flaB and recA) were observed to vary during
cultivation.

RNA sequencing data analyses: Identification of Rho-independent

terminators and 5’ ends of transcripts

To identify potential Rho-independent terminators, in silico analyses of the B. burgdorferi B31
genome sequence were performed, then those results were compared with RNA-Seq data. The
genome sequence was queried using three separate intrinsic terminator prediction programs:
RNAMotif [59], TransTerm [60], and FindTerm [61], as implemented in the SIPHT pipeline
[62]. If a potential terminator was identified any of these programs, it was included for further
analysis. Each of these predictions were then manually annotated with an indicator of their rel-
ative location: the 3’ designation indicates putative Rho-independent terminators residing
within 100bp of the stop codon or when read coverage supported continuous transcription to
the terminator; the 5’ designation indicates putative Rho-independent terminators located
within 150bp upstream or downstream of a start codon, but not meeting the criteria for 3’ des-
ignation; the Internal designation are putative Rho-independent terminators which are internal
to coding sequences that do not meet the criteria for 3’ or 5’ designations; and those labeled IG
are within intergenic regions but do not meet any of the other criteria. In some cases, genes
which were very closely clustered would have terminators that met both the criteria for 5’ and
3’ annotations. These were annotated as 3’, consistent with a typical terminator ending tran-
scription at the 3’ end of a gene. The inclusion of “A” in any of the annotations indicates that it
is antisense to the direction of the gene with which it is associated. RNS-Seq read coverage sur-
rounding each putative Rho-independent terminator sequence was then examinedmanually
by several members of the research team.

To facilitate the detection of 5’ ends and ncRNAs, a custom script was utilized that deter-
mines putative transcriptional units. Coverage per position was averaged over a window of
10nt for each strand, then scanned 5’ to 3’ for positions with more coverage than the position
before it. These positions are set as possible transcript boundaries (PTBs). The average cover-
age in windows between PTBs was calculated. Consecutivewindows whose average coverage
differed by less than 2.5 fold were joined, since the PTBs that separate them are more likely to
represent localized dips in coverage than true transcript boundaries. The position with highest
coverage in windows between pairs of consecutive PTBs was calculated. Coverage on either
side of this position between the 5’ and 3’ adjacent PTBs was scanned, searching for a position
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with> 10-fold lower coverage. If such a position was not encountered, the PTB 5’ to the win-
dow was removed. This was done to filter out low “hills” of coverage that are unlikely to repre-
sent real, separate transcription units. Windows between remaining PTBs represent putative
transcription units (PTUs). Short (<200 nt) PTUs that were directly adjacent (i.e. within one
position) to long PTUs were joined together, from experience that such reads often correspond
to 5’ and 3’ UTRs. The total and normalized (FPKM) abundance was calculated for each PTU.
Each PTU was also annotated for its genomic location relative to other genes, to facilitate effi-
cient differentiation among various classes of PTU. Similarly, the distance of the 5’ and 3’ ends
of the PTUs from the 5’ and 3’ end, respectively, of the nearest ORF was calculated and a histo-
gram of these distances was generated.

The 5’ ends of PTUs compared to the start codon were generated for each biological repli-
cate at each time point. As 5’ ends can vary as a result of differential promoter usage in different
conditions, 5’ ends were merged across replicates but not across time points. Several criteria
were utilizedwhenmerging to further refine and increase the accuracy of 5’ end mapping: each
must (1) reside 5’ of the start codon of its respective gene, (2) lie within 500bp of the start
codon of its respective gene, (3) and finally whenmerging across biological replicates most dis-
tal identified 5’ end to its respective start codon was chosen. This last criterion was chosen
because it gave the most reliable 5’ ends when compared to previously determined start sites.

RNA sequencing data analyses: Noncoding RNAs

To facilitate detection of ncRNAs regardless of condition, read coverage histograms were
merged across replicates and time points. This single file was then analyzed by determining
PTUs as described above, but filtered by those which either did not overlap previously deter-
mined ORFs or overlapped them on opposite strands. These identified ncRNAs were further
filtered to include only those putative ncRNAs that had a sum total of>5000 FPKM aligning
to them across all 9 samples, to generate a single list of high confidence predicted transcripts.
When identifying putative ncRNAs from the native plasmids, alterations were made to this
cut-off, since relatively low expression from certain plasmids artificially inflated the FPKM-
based expression of these loci. Effectively, both at the quantification level and visual level, the
signal to noise ratio between background and expressed genes was reduced compared to the
chromosome. To circumvent this, thresholds were determined by visual inspection of the read
coverage plots for each particular genetic element to identify an appropriate cut-off, wherein
ncRNAs expressed above that level were readily identified by visual inspection, while those
below that level were not easily discerned above background.

Results

RNA-Sequencing of cultured Borrelia burgdorferi

To profile the global transcriptome of B. burgdorferi, we isolated RNA from triplicate cultures
of wild-type strain B31-A3 at early-exponential and mid-exponential phases, and one day after
reaching stationary phase. The assayed cultures were confirmed to contain all parental plas-
mids, using both multiplex PCR prior to RNA extraction and post hoc inspection of read map-
ping [52]. Total RNA was converted to Illumina cDNA libraries using the RNAtag-Seq
protocol [55], and libraries were sequenced across four lanes on the Illumina NextSeq
platform.

For each sample, at least 2 million reads were obtained, with an average of 17.9 million
reads per sample. Targeted depletion of ribosomal RNA (rRNA) resulted in the vast majority
of reads aligning to the sense and antisense strands of annotated ORFs, or to intergenic regions,
with only ~4% of reads aligning to rRNA. Due to the modified bases in tRNAs, which impede
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the reverse transcription step in RNAtag-Seq, tRNAs are under-represented in the results
[63,64].

There are 1386 annotated genes in the main chromosome and small DNA replicons of B.
burgdorferi B31-A3 [47,48]. We detected expression of>10 fragments per kilobase per million
reads aligning to annotated ORF (FPKMO) in at least one replicate for 92% of these annotated
ORFs (Table 1 and S2 Table). Individual samples showed detectable expression of between
81.8% and 87.8% of the annotated genes, with an average of 84.9% of genes expressed at levels
at or above 10 FPKMO. Pearson correlation between normalized gene expression of biological
replicates exceeded 0.96 in most cases (S1 Fig).

ORFs that did not produce significant levels of transcripts (i.e., consistently yielded less than
10 FPKMO) are listed in S3 Table. All but one of these ORFs are located on the small repli-
cons/plasmids. They include genes of the resident cp32 prophages, and a large number of
hypothetical plasmid-encodedproteins [65–67]

The RNA-Seq datasets were analyzed to identify differentially expressed genes, rho-indepen-
dent terminators, 5’ ends of transcripts, and noncoding RNAs. Examples of each are described
below and the results of all these analyses are provided in supplemental tables, allowing other
researchers to examine data pertinent to their genes of interest. A caveat to this and every other
study of cultured B. burgdorferi is that BSK-II medium is an artificial environment, in which
somemammal-specific and tick-specific genes are transcribed simultaneously. It is possible,
therefore, that some alternative transcripts are produced during the natural infectious cycle.

B. burgdorferi differentially expresses numerous transcripts during

cultivation

It is well known that B. burgdorferi and other bacteria change their transcriptional profiles as
cultures mature [44,45,68]. To gain insight into changes in gene expression elicited by changes
in growth phase, RNAtag-Seq libraries were generated from 3 independent cultures of B. burg-
dorferi B31-A3 grown in the same batch of medium and in the same 35°C incubator and har-
vested at the same three culture densities.

Two important observationswere made that impact qRT-PCR analysis in this and other
studies. First, transcripts that have been used in previous studies as “invariant” internal con-
trols were seen to vary in expression levels during cultivation. Second, transcript levels of a sub-
stantial number of B. burgdorferimRNAs changed as cultures progressed from early
exponential into early stationary phase. A total of 243 of the annotated ORFs (17.6%) were
found to be significantly differentially expressed (log2 fold change> 1X and a false-discovery
rate< 0.05) among the different growth phases (Fig 1 and S4, S5, and S6 Tables).

Table 1. Sequencing metrics. Sequencing metrics for each sample including sample name, total reads, total reads aligned to the B31-MI genome, per-

centage of reads aligned to the B31-MI genome, and the percentage of reads mapping to ribosomal RNA loci.

Sample Total Reads Total Reads Aligned Percent Reads Aligned Percent Ribosomal

A3 E1 6.07E+06 2.41E+06 72.81 4.78

A3 E2 1.17E+07 5.09E+06 78.89 2.76

A3 E3 1.53E+07 6.79E+06 82.42 3.52

A3 M1 2.57E+06 8.65E+05 56.60 1.44

A3 M2 4.65E+07 1.31E+07 47.56 0.97

A3 M3 3.56E+07 1.10E+07 53.62 2.41

A3 S1 1.72E+07 2.62E+06 24.47 6.41

A3 S2 1.57E+07 3.31E+06 35.05 8.27

A3 S3 1.05E+07 2.91E+06 47.32 2.59

doi:10.1371/journal.pone.0164165.t001
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The flaB transcript is frequently used as a qRT-PCR reference transcript [58,69,70]. The
recAmRNA has also been used on occasion as a reference, under the same assumption of
invariability [16,18]. However, our RNA-Seq analyses consistently revealed differences in both
flaB and recAmRNA levels when comparing early or mid-exponential to stationary phases (S4
and S5 Tables). For this reason, we mined our data for a more stably-expressed mRNA. The
ftsKmessage was identified as being nearly unchanged across growth phases, varying at most
by 0.98x. Therefore, all qRT-PCR results were analyzed using ftsK as the internal, constant
standard (Fig 2).

RNA-Seq revealed 9 significant differences in annotated genes when comparing early-expo-
nential and mid-exponential cultures. Four transcripts increased and 5 decreased during tran-
sition to mid-exponential stage. Of the four transcripts that increased, three are of unknown
function, and the fourth is a putative bacteriophage integrase on small replicon lp56 (S4A
Table). Of the five genes that were significantly reduced, four are bpaB genes of the cp32 pro-
phages (S4B Table). Previous studies found that bpaB transcript levels decreased as B. burgdor-
feri growth rate increased [54].

Fig 1. Volcano plots of differentially expressed genes. Fold changes between genes were plotted

compared to adjusted p-value when comparing (A) early-exponential against mid-exponential, (B) mid-

exponential against stationary, and (C) early-exponential against stationary. Criteria of >2X change in

expression and <0.05 adjusted p-value were used to define significantly changed genes, and are shown on

the plot with the appropriate limiting lines. Genes which met the criteria and were expressed at higher levels

in a particular comparison are shown in red and those which were expressed at lower levels are shown in

blue.

doi:10.1371/journal.pone.0164165.g001

Fig 2. Quantitative RT-PCR analyses of select transcripts. Results for each transcript were compared with

results for ftsK transcript of that culture. For each gene tested, bars from left to right are relative abundance during

early-exponential, mid-exponential, and stationary phases of growth.

doi:10.1371/journal.pone.0164165.g002
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In contrast, increased culture density to 108 bacteria/mlwas accompanied by significant
changes in many transcripts. When comparing mid-exponential phase with stationary phase,
66 genes increased and 7 genes decreased in transcript abundance (S5A and S5B Table). When
comparing early-exponential to stationary phase, 129 genes were expressed at higher levels and
98 genes were expressed at lower levels (S6A and S6B Table).

Transcripts of several genes important for infection and host surface adhesion were elevated
during stationary phase, including dbpA and dbpB (2.4X and 4.5X, respectively). Among the
genes that decreased in abundance during the exponential-stationary transition were factors
involved in DNA repair and replication (dnaA, polA, recD, and recB), and genes involved in
central metabolism (pfs andmetK). Those observations are consistent with an overall slow-
down of cellular metabolism and cessation of DNA replication.

Relative expression levels of select genes were also assessed by use of qRT-PCR, permitting
comparisons of transcript level determination by the RNA-Seq and qRT-PCR methods. Tran-
scripts that RNA-Seq indicated to increase, decrease, or remain stable across all three culture
stages were assayed. When comparing early-exponential to stationary phase of growth, dbpA
was significantly increased in transcript abundance and rpoNwas significantly decreased in
abundance, detected by both DEseq analysis of RNA-Seq and by qRT-PCR (Fig 2). When
assayed by qRT-PCR and DESeq, sodA did not significantly change during cultivation. DESeq
analysis of ospC indicated a dip in transcript abundance in mid-exponential phase, which was
not detected by qRT-PCR. This disparity in detection by the two methods is being investigated
further.

B. burgdorferi contains an extensive untranscribed DNA sequence

B. burgdorferi strain B31 naturally carries a ca. 21kb linear replicon named lp21, which con-
tains an 11kb stretch of 61-63bp tandem repeats [48]. Other strains of B. burgdorferi carry this
same sequence attached to an end of the linear main chromosome [71]. The function of this
extensive stretch of directly-repeated sequences has yet to be determined. Small numbers of
copies of the repeated sequence occur on other native plasmids: approximately one and a half
copies reside on lp28-3, partially overlapping ORF Bb_H06, and partial copies exist on lp28-4
and lp36, both of which are immediately 3’ of annotated ORFs. All three of those ORFs were
transcribed in culture (S2 Table). While we detected abundant expression of lp21 operons that
flank the 11kb repeat element, almost no reads mapped within the repeat stretch (Fig 3), sug-
gesting that this region is not transcribed. The small number of dispersed reads that were com-
putationally mapped within the repeat element are likely due to inappropriate mapping of
reads from the lp28-3, lp28-4, and/or lp36 sequences. A caveat of mapping algorithms is that
repeated sequences cannot be discriminated, so if a read aligns equally well to multiple loci, it
will be randomly assigned to one of those loci. The absence of detectable transcription from the

Fig 3. Example of an extensive, untranscribed sequence of B. burgdorferi. Read coverage histograms of the 11kb direct-repeat sequence

within the naturally-occurring plasmid lp21. Red lines indicate relative transcript abundance from the + strand (left to right) and blue indicate

relative transcript abundance from the–strand (right to left), and reside above (+) and below (-) the central axis. Genes are noted below coverage

plots and directionality is indicated by arrows at the ends of genes. Relative orientation of genes on the X axis is consistent with RefSeq

annotations. Coverage per base is given on the Y axis to the right of the plot.

doi:10.1371/journal.pone.0164165.g003
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borrelial 11kb direct repeat sequence adds further to the mystery of why this unusual sequence
is so well-conservedamong B. burgdorferi strains.

Mapping of transcript 5’ ends

Methods have been developed that can enrich for RNAs which carry a 5’ triphosphate and
therefore may represent primary transcripts [72]. These allow for the differential examination
of RNA-Seq (dRNA-Seq) libraries which are enriched in primary transcripts compared to
those that are not. While such methods can facilitate identification of transcript start sites, data
from RNAtag-Seq can also be analyzed to identify probable transcription starts. Newly-devel-
opedmethods for analysis of RNA-Seq data have mapped start sites that agree well with both
dRNA-Seq and methods such as 5’ RACE [73]. RNA-Seq was recently used by another group
to identify the putative transcriptional promoters of the B. burgdorferi tamB and bamA genes
[74]. To this end, we mined our RNAtag-Seq data for large increases in read coverage within a
narrow window. Approximately 600–800 putative transcript 5’ ends in each of culture/condi-
tion dataset. A large proportion of these putative 5’ ends mapped within 40bp upstream of the
nearest annotated start codon. All results are listed in S7 Table, to assist researchers in further
investigating genes of interest.

The transcriptional start sites of severalB. burgdorferi operons have previously beenmapped
by methods such as primer extension or 5’ rapid amplification of cDNA ends (5’ RACE) and
more recently, RNA-Seq. The majority of previously-determined5’ ends which were identified in
our data set matched either exactly or within a few bases of our identified 5’ ends [74–79], adding
to confidence that newly-identified5’ ends are likely to be accurate start sites (Table 2).

Identification of intrinsic termination sites

Rho independent, or intrinsic, terminators can abruptly end extension of a transcript, or serve as
regulatory sequences [80]. Prior to performingRNA-Seq, the B. burgdorferi B31 genome sequence
was analyzed by combined use of three separate intrinsic terminator prediction programs. Those in
silico analyses predicted the existence of 201 Rho-independent termination sites (S8 Table).

RNA-Seq data were then visually inspected for abrupt drops in mapped reads surrounding
those sites, as expected from Rho-independent termination.Many of the predicted terminators
were followed by distinct reductions reads mapped, although some exceptions were found.
Some of these discrepanciesmay reflect the fact that Rho-independent terminator prediction
algorithms were trained and vetted on E. coli, whose nucleic acid composition is substantially
different from that of B. burgdorferi (51% vs. 29% G+C, respectively) [47,48,81].

Of the in silico predicted Rho-independent terminators that were supported by RNA-Seq
data, 99 (49%) resided within 100bp 3’ of a stop codon, or had transcriptomic support for an

Table 2. Comparison of predicted transcriptional start sites with previously identified transcriptional start sites. Comparison of genes with previ-

ously identified transcriptional start sites that were also identified by RNA-Seq. Columns list the gene, the previously-mapped start-site location, citation for

that determination, and RNA-Seq determined sites during early-exponential, mid-exponential, and stationary phases of growth. For some operons, RNA-Seq

algorithms identified different start sites from different cultures; in which case, all called start sites are listed.

Gene Mapped 5’ End Citation RNA-Seq Early-exponential RNA-Seq Mid-exponential RNA-Seq Stationary

ospC -20 [75] -19/-21 -21 -16

secA-sod -100 [77] -100 -100 -100/-27

bpuR -42 [15] -44 -44 -44

chbC -42 [78] -24/-25/-28 -29/-41/-46/ -26/-24

lon-1 -19 [76] Not detected -17 -17

tamB -13 [74] Not Detected -13 -13

bamA -343 [74] Not Detected -348 -348

doi:10.1371/journal.pone.0164165.t002

B. burgdorferi Transcriptome

PLOS ONE | DOI:10.1371/journal.pone.0164165 October 5, 2016 10 / 22



extended 3’ UTR that ended at the predicted terminator. Examples include flaB and the
bmpDCAB operon (Fig 4). The flagellin-encoding flaB gene is expressed at high levels ([82]
and S2 Table), so a strong terminator would prevent read-through into the unrelated down-
stream gene. The bmpDCAB locus constitutes a complex operon. Two intrinsic terminators
have previously been identified biochemically, residing between bmpD and bmpC, and between
bmpA and B [83,84]. The computer algorithms predicted the bmpD–bmpC terminator, which
was supported by RNA-Seq read mapping (Fig 4C). The bmpA–bmpB terminator was neither
predicted nor apparent from experimental data. RNA-Seq read-mapping detected elevated lev-
els of reads immediately 5’ of both bmpD and bmpA, consistent with the previously reported
transcriptional start sites [84] (Fig 4C).

Intrinsic terminators residing within the 5’ UTR, or inside the coding region of an mRNA
can have regulatory effects on transcriptional elongation and, therefore, protein expression
[85]. Nineteen percent of the predicted terminators are located within 150bp of a start codon.
The remaining percentage of identified intrinsic terminators resided either well within genes or
were located intergenically yet not within 100bp of any annotated gene or putative ncRNA.

Other transcripts were associated with distinct decreases in coverage at their 3’ ends that
did not overlap a predicted Rho-independent terminator, suggesting that these 3’ boundaries
may be due to RNA processing of longer transcripts or that the sequences requirements for
Rho-independent termination in B. burgdorferi vary significantly from those in other model
organisms.

The 3’ ends of the majority of genes lacked any predicted intrinsic terminator and lacked
discrete ends. These transcripts generally ended with regions of gradually declining transcript

Fig 4. Examples of Rho-independent termination sites at the end of genes that were bioinformatically

predicted and supported by transcriptomic data. (A) flaB; and (B) bmpDCAB. Thin red lines indicate transcript

abundance from the + strand (left to right) and thin blue indicate transcript abundance from the–strand (right to

left), and are shown above (+) and below (-) the central axis. Genes are noted below coverage plots and

directionality is indicated by arrows at the ends of genes. Relative orientation of genes on the X axis is consistent

with RefSeq annotations. Coverage per base is given on the Y axis to the left of the plot. Predicted Rho-

independent terminators are indicated by red boxes on the same plane as the gene annotations and directionality

is indicated by arrows. Terminators and the associated coverage at their location are highlighted by grey boxes.

doi:10.1371/journal.pone.0164165.g004
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abundance after the stop codon. This gradual trailing off of transcript coverage could be due to
a number of reasons, including Rho-dependent termination or degradation. Because of these
uncertainties and the variability in length of decline, we did not comprehensively analyze 3’
ends of transcripts that did not contain apparent Rho-independent terminators.

B. burgdorferi evidently transcribes numerous noncoding RNAs

RNA-Seq has the unparalleled ability to investigate transcriptional activity from both strands
of DNA. This allows the unbiased discovery of both intergenic noncoding RNAs (ncRNAs)
and RNAs that are transcribed antisense to protein-codingORFs (asRNA). To identify candi-
date B. burgdorferi ncRNAs, we mined our RNA-Seq data for relatively short (<425) putative
transcription units located in non-coding regions of the genome or antisense to annotated pro-
tein encoding genes. This analysis yielded 351 putative ncRNAs (S9 Table), of which 129 were
transcribed from the main linear chromosome, 82 from the resident cp32 prophages, and 140
from the remaining linear and circular plasmids. Slightly more than half (186) of the ncRNAs
were transcribed antisense to annotated coding sequences. Sixty-two putative ncRNAs were
encoded in intergenic regions without any overlap of known ORFs. One hundred three con-
tained both antisense and intergenic sequences, of which 39 included sequences that are anti-
sense to or overlap pseudogenes.

Among the most highly expressed ncRNAs were homologs of stable regulatory and catalytic
RNAs, including 6S, tmRNA, and the RNA subunits of RNase P and SRP (Fig 5). This study is
the first to detect production of those ncRNAs in B. burgdorferi. Levels of the srp RNA were sig-
nificantly increased upon entry into stationary phase. dsrA, the ncRNA that regulates transla-
tion of the RpoS alternative sigma factor [42], was also readily detected (Fig 5E).

One of the most highly-expressed transcripts under all culture conditions was a previously
unannotated RNA of approximately 401 nucleotides. This novel RNA was designated bsrW
(borrelial smallRNA W). It is encoded by a chromosomal locus that is between fusA and
Bb_0542 (Fig 5F). Although unannotated in the NCBI genome entry for B. burgdorferi B31, the
sequence is conserved across much of the genus. Upon manual inspection, bsrW was found to
contain a small ORF that is predicted to encode a 76 residue polypeptide. BLAST-P analyses
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed homologies with other bacterial proteins that
contain KTSC domains. Although such proteins are found in other bacterial species, their func-
tions are not known. If bsrW does in fact encode a small ORF, it would have unusually long 5’
and 3’ untranslated regions (102 and 82 nucleotides, respectively).

These transcriptomic analyses also identified 186 transcripts that ran antisense to coding
sequences. All were transcribed at levels above our conservative cut-off threshold, providing
confidence that their production is of significance to B. burgdorferi. We did not further analyze
these probable ncRNAs further, but provide the results as a service to investigators to explore
targets of interest. Notably, many of these putative ncRNAs overlap genes important for infec-
tion and tick colonization, including rpoN, glpF, and Bb_0347 (Fig 6) [86–88]. Antisense RNAs
can have myriad effects on their cognate genes, including influencing transcriptional efficiency
via polymerase competition or base pairing with complementary transcripts to prevent or alter
transcript stability.

Discussion

Transcriptomics revolutionized the study of biological systems in the early 2000s with the
advent of the microarray. For the first time, researchers were able to investigate gene expression
on a genome-wide scale in a single experiment. The field was once again revolutionized in 2009
with the development of RNA-Seq, utilizing the next-generation sequencing platforms. As the

B. burgdorferi Transcriptome

PLOS ONE | DOI:10.1371/journal.pone.0164165 October 5, 2016 12 / 22

http://blast.ncbi.nlm.nih.gov/Blast.cgi


various technologies have matured, RNA-Seq has become the gold standard for transcriptomic
investigations. The most recent iterations of RNA-Seq allow for the global comparison of gene
expression patterns, and the unbiased identification of transcriptional start sites, transcrip-
tional end sites, and previously undefined transcripts. To date, only a handful of studies have
used RNA-Seq to explore the transcriptomes of B. burgdorferi or any other spirochete, and
those focused almost exclusively on mapping transcripts from ORFs [17,31,33,89]. The present
study represents the first detailed analysis of coding and non-coding transcripts in B. burgdor-
feri and the first to examine transcriptome variation and stability during culture aging.

Approximately 18% of annotated B. burgdorferiORFs were found to be differentially
expressed as cultures progressed, during standard cultivation conditions. In addition, as

Fig 5. Examples of intergenic noncoding RNAs. Red lines indicate transcript abundance from the + strand (left to right) and blue indicate

transcript abundance from the–strand (right to left), and are shown above (+) and below (-) the central axis. Genes are noted below coverage

plots and directionality is given by arrows at the ends of genes. Relative orientation of genes on the X axis is consistent with RefSeq

annotations. Coverage per base is given on the Y axis to the left of the plot. Neither dsrA (E) nor 6S (C) are currently annotated in either

GenBank or RFAM. dsrA is shown as the longest possible transcript described in [42].

doi:10.1371/journal.pone.0164165.g005
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Fig 6. Examples of putative antisense noncoding RNAs. Read coverage histograms of previously antisense

ncRNAs that overlap; rpoN, glpF, and ORF Bb_0347. Read Red lines indicate transcript abundance from the + strand

(left to right) and blue indicate transcript abundance from the–strand (right to left), and are shown above (+) and below

(-) the central axis. Genes are noted below coverage plots and directionality is given by arrows at the ends of genes.
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consequences of long-acting regulatorymechanisms that control B. burgdorferi gene expres-
sion, previous conditions encountered by a culture can have significant impacts on gene
expression. For example, B. burgdorferi passaged from -80°C to 23°C exhibit significantly dif-
ferent transcript and protein patterns than do those that are passaged from 35°C to 23°C [54].
Those results indicate the importance of using identically parallel cultures when attempting to
compare B. burgdorferi strains.
B. burgdorferi also appears to express a substantial number of noncoding RNAs, both from

intergenic regions and antisense to coding sequences. Thus, as has been shown for many other
bacteria, there is a strong probability that the Lyme disease spirochete utilizes ncRNAs to con-
trol transcriptional and post-transcriptional processes. Functional evaluation of these ncRNAs
certainlymerits further study.

Analyses of these RNA-Seq data gave insight on borrelial transcriptome architecture,
including apparent transcriptional start and stop sites. In silico prediction algorithms were
fairly effective at identifying Rho-independent terminator sequences, but were not perfect. The
algorithms are generally based on studies of E. coli, which contains 51% G+C. Results of our
studies can be used to refine those prediction programs for better analyses of low G+C bacteria
such as B. burgdorferi. Evaluation of differences in read 5’ ends enabled identification of several
previously-defined transcriptional start sites. Thus, many of the 5’ ends listed in S7 Table prob-
ably correspond with transcriptional start sites. Those data are presented to guide investigators
in further studies of genes of interest, to be confirmed by additional methods such as primer
extension or 5’-RACE.We note that those methods can yield incomplete pictures, especially
when an operon utilizesmore than one promoter/transcriptional start site. Combinations of
RNA-Seq and another, independent methodmay provide the most accurate results.

Taken together, our findings provide key new insights into the transcriptional changes
underlying B. burgdorferi progression through different growth phases during cultivation.
Additionally, they offer a significantlymore detailedmap of the B. burgdorferi transcriptome
that, along with the raw RNA-Seq data generated in this study, will help advance efforts to bet-
ter understand this important pathogen.

Supporting Information

S1 Fig. Correlation between replicates. Log2 relative expression (FPKMO) comparing each
replicate were plotted and Pearson’s correlations were calculated.
(EPS)

S1 Table. PCR oligonucleotideprimers used in these studies.
(XLSX)

S2 Table. Relative gene expression of annotated genes.The fragments per Kilobase per mil-
lion fragments of ORF (FPKMO) were determined for each annotated gene. Column 1 con-
tains the ORF identification number, and columns 2–10 contain the FPKMO lists for each of
the 3 replicates of each of the 3 samples.
(XLSX)

S3 Table. Annotated ORFs that were not readily transcribed in any culture. S2 Table, which
containing the FPKMO expression levels of all 1386 annotated genes in the B. burgdorferi

Relative orientation of genes on the X axis is consistent with RefSeq annotations. Coverage per base is given on the Y

axis to the left of the plot. ncRNAs are highlighted by grey boxes determined by their predicted start and end sites

determined in S8 Table. Identified Rho-independent terminators are indicated by red boxes, and directionality is

shown by arrows at their ends.

doi:10.1371/journal.pone.0164165.g006
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B31-A3 genome, was filtered to identify ORFs which were not present at greater than 10
FPKMO in any sample at any growth phase. Columns list each genetic element, ORF identifi-
cation number, and expression levels in three biological replicates at all three phases of growth.
(XLSX)

S4 Table. Transcripts with significantlydifferent abundance in mid-exponential compared
to early-exponential. (A)Genes are listed which were identified by DEseq as differentially
expressed by meeting the criteria of>2X greater abundance and an adjusted p-value of<0.05.
Four genes were identifiedwhichmet these criteria. (B)Genes are listed which were identified by
DEseq as differentially expressed by meeting the criteria of>2X lower abundance and an
adjusted p-value of<0.05. Five genes were identifiedwhichmet these criteria. In order from left
to right columns list genetic element on which a given gene resides, the gene ID, the mean expres-
sion, the early-exponential expression, mid-exponential expression, fold change, log2 fold
change, p-value, adjusted p-value, mid-exponential variance, and early-exponential variance.
(XLSX)

S5 Table. Transcripts with significantlydifferent abundance in stationary phase compared
to mid-exponential. (A)Genes are listed which were identified by DEseq as differentially
expressed by meeting the criteria of>2X greater abundance and an adjusted p-value of<0.05.
Sixty-five genes were identifiedwhich met these criteria. (B)Genes are listed which were iden-
tified by DEseq as differentially expressed by meeting the criteria of>2X lower abundance and
an adjusted p-value of<0.05. Seven genes were identifiedwhich met these criteria. In order
from left to right columns list genetic element on which a given gene resides, the gene ID, the
mean expression, the mid-exponential expression, stationary expression, fold change, log2 fold
change, p-value, adjusted p-value, stationary variance, and mid-exponential variance.
(XLSX)

S6 Table. Transcripts with significantlydifferen abundance in stationary phase compared
to early-exponential. (A)Genes are listed which were identified by DEseq as differentially
expressed by meeting the criteria of>2X greater abundance and an adjusted p-value of<0.05.
One hundred and twenty-nine genes were identifiedwhich met these criteria. (B)Genes are
listed which were identified by DEseq as differentially expressed by meeting the criteria of>2X
lower abundance and an adjusted p-value of<0.05. Ninety-eight genes were identifiedwhich
met these criteria. In order from left to right columns list genetic element on which a given
gene resides, the gene ID, the mean expression, the early-exponential expression, stationary
expression, fold change, log2 fold change, p-value, adjusted p-value, stationary variance, and
early-exponential variance.
(XLSX)

S7 Table. Putative transcript 5’ ends. (A) early-exponential phase cultures, (B)mid-exponen-
tial phase, and (C) stationary phase cultures. Listed putative 5’ ends include the ORF’s genetic
element, putative start location, strand, distance fromORF start codon, and description of the
ORF.
(XLSX)

S8 Table. Bioinformatically predicted intrinsic termination sites. The full list of predicted
intrinsic terminators. Included is are the genetic element, start location, strand, length, pro-
gram predicted (T: TransTerm, R: RNAMotif, F: FindTerm, B: RNAMotif and TransTerm, X:
RNAMotif and FindTerm, Z: RNAMotif, FindTerm, and TransTerm), score as described in
materials and methods, and relative location compared to nearby genes.
(XLSX)
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S9 Table. Identified non-coding RNAs. Non-coding RNAs were identified as described in the
materials and methods. Included are the genetic element, start position, end position, strand,
relative location (I: Intergenic, A: Antisense, P: Pseudogene), length, associated genes, and
those genes functions. Orders of numeric position and annotations are given according to
order of the (+) strand. Note that Position 1 and Position 2 reflect start and stop sites differ-
ently depending on strand. For ncRNAs located on the (+) strand position 1 is the start and
position 2 is the stop. For entries located on the (-) strand, position 1 is the end site and posi-
tion 2 is the start site. Commas between associated genes and functional annotations indicate
that the ncRNA overlaps both contiguously and “/” between them indicate that it is located
intergenically between the two genes.
(XLSX)
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